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Abstract

Presented here is a total-Lagrangian displacement-based ®nite-element formulation for general anisotropic beams
undergoing large displacements and rotations. The theory fully accounts for geometric nonlinearities (large
rotations), general initial curvatures, and extensionality by using Jaumann stress and strain measures, an exact
coordinate transformation, and a new concept of orthogonal virtual rotations. Moreover, transverse shear

deformations are accounted for by using a ®rst-order shear-deformation theory. To verify the accuracy of the ®nite-
element model, two test ®xtures have been built for bending and twisting experiments. Large static deformation tests
of beams with di�erent loading conditions have been performed. The ®nite-element results agree closely with the

experimental results and numerically exact solutions obtained by using a multiple shooting method to solve for
post-buckling deformations of highly ¯exible beams undergoing large static rotations and displacements in three-
dimensional space. # 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Total-Lagrangian beam theory; Finite elements; Large-deformation tests

1. Introduction

Highly Flexible Structures (HFSs) have been used in many mechanical systems, civil structures, and
aerospace vehicles to satisfy space limitations, provide special mechanisms, and/or reduce structural
weight. Moreover, because current NASA space missions require structures that have dimensions much
greater than the shroud diameter of launch vehicles, deployable HFSs are extensively used in space
structures. This extensive use of HFSs reveals the need for a design and analysis software and a
database system with guidelines for designing HFSs.
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In analyzing geometrically nonlinear structures, a Lagrangian formulation is commonly used because
there is a natural undeformed state to which the body would return when it is unloaded. Moreover,
because the structural sti�nesses of such systems are functions of displacements, an incremental/iterative
procedure is commonly used in solving such problems. Approaches used in the literature in
geometrically nonlinear ®nite-element analysis can be grouped into four:

1. an Updated Lagrangian (UL) formulation using linear strains (e.g., engineering strains) de®ned with
respect to the deformed con®guration,

2. an UL-formulation using truncated nonlinear strain±displacement relations (e.g., von Karman
strains),

3. a Total Lagrangian (TL) formulation using fully nonlinear strain±displacement relations (e.g., Green±
Lagrange strains) derived by using large rotational Degrees Of Freedom (DOFs), and

4. a TL-formulation using fully or truncated nonlinear strain±displacement relations (e.g., Green±
Lagrange strains) de®ned with respect to a corotated elemental reference frame.

In an UL-formulation, the referential geometry (i.e., volume, area, coordinates) is brought up-to-date
at every incremental step upon convergence but ®xed during the iterative process. Such an UL-
formulation may be regarded as an application of the TL-formulation to a single load step with the
previously converged con®guration as an initial geometry. If an UL-formulation based on a linear
strain±displacement relation is employed, the update process needs to be performed at every iteration
(Lee, 1992). In an UL-formulation, the accuracy of current solutions in an incremental/iterative solution
procedure is a�ected by the accuracy of solutions of the previous step, and the error of the updated
con®guration may accumulate when the number of steps increases. Moreover, the magnitude of
incremental steps (load, displacement, or arc-length steps) needs to be in®nitesimal (if linear strain±
displacement relations are used) or small (if truncated nonlinear strain±displacement relations are used)
because it is limited by convergence consideration and the method used in approximating large rotations
(not vector quantities). Furthermore, because the deformed geometry is used as the reference frame in
an UL-formulation, the obtained displacements, stresses, and strains need transformation before update,
which is computationally expensive.

In a TL-formulation, the accuracy of current solutions is not a�ected by the accuracy of solutions
obtained in the previous step, and the obtained displacements, stresses, and strains do not need
transformation before update. Moreover, the incremental steps used in a TL-formulation are usually
larger than those used in an UL-formulation because they are only limited by convergence
consideration. Theoretically, if the solution converges, arbitrarily large steps can be used and no
accuracy is lost in an incremental/iterative solution procedure using a TL-formulation. However, it is
di�cult to derive appropriate fully nonlinear strain±displacement relations. For a review of nonlinear
beam theories, the reader is referred to the introduction section of Pai and Nayfeh (1994b).

Two approaches are commonly used in deriving fully nonlinear strain±displacement relations. The
®rst one (used in Approach (3)) uses three or two large Euler-type rotation angles as well as three
displacement DOFs with respect to the undeformed reference frame (Surana, 1983; Palazotto and
Dennis, 1992). Since ®nite rotation angles are not vector quantities, the derived strain±displacement
relation is not invariant with respect to the rotation sequence. Hence, this approach is not appropriate
for bifurcation study because some solutions may be prevented from being obtained if multiple solutions
exist. Moreover, since the large rotational DOFs are usually treated as independent DOFs although they
are functions of derivatives of translational DOFs, the orders of interpolation functions for rotational
DOFs may not be consistent with those of translational DOFs. This inconsistency may cause the occur
of spurious strains. Moreover, some ®nite elements derived from this approach use lower order
interpolation functions for in-plane displacements than those for the out-of-plane displacements. This
can cause spurious strains too. The second approach (used in Approach (4)) is to use three or two small
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Euler-type rotation angles or triads or quarternions as well as three displacement DOFs with respect to
a corotated reference frame (Rankin and Brogan, 1986; Kohnke, 1989; Nygard and Bergan, 1989;
Stanley and Nour-Omid, 1990).

Corotation is a method developed for making large rotations relative to an inertial frame look like
small rotations at the element level (Nygard and Bergan, 1989). This is achieved by de®ning, for each
element, a corotated element reference coordinate frame using the deformed nodal coordinates. The
rigid body motion of this frame is then `subtracted' from the total motion of the nodes, leaving relative
translations and rotations that can be made arbitrarily small by simply re®ning the mesh. Once nodal
relative motions have been rendered su�ciently small, the relative small rotations can be treated as
vector quantities and they may be used in simpli®ed strain±displacement relations. Nygard and Bergan
(1989) proved that the values of Green strains (second Piola±Kirchho� stresses) de®ned with respect to
the undeformed frame are the same as those de®ned with respect to the corotated frame and hence there
is no need of transformation before updating these strains and stresses. However, the global
displacements need transformation before updating (Rankin and Brogan, 1986). Moreover, because the
corotated frame is de®ned by nodal coordinates, the sizes of elements need to be small in order to keep
the relative rotations small (Nygard and Bergan, 1989).

The above discussions show that a TL-formulation with corotation is the most attractive approach,
and fully nonlinear or truncated Green±Lagrange strains are commonly used in this approach (Lee,
1992; Rankin and Brogan, 1986; Nygard and Bergan, 1989; Stanley and Nour-Omid, 1990). Nonlinear
strains used in a TL-formulation need to be objective and geometric in order to use the material
constants obtained from experiments in which rigid-body rotations are prevented and engineering stress
and strain measures are used (Malvern, 1969; Pai and Nayfeh, 1994a). Unfortunately, Green±Lagrange
strains are not geometric measures although they are objective (Pai and Nayfeh, 1994a; Pai and
Palazotto, 1995a).

A total-Lagrangian ®nite-element code GESA (Geometrically Exact Structural Analysis) has been
under development for analyzing highly ¯exible structures. GESA is a displacement-based ®nite-element
code written in the MATLAB language and is based on theories developed for structures undergoing
large displacements, large rotations, and ®nite strains (Pai and Nayfeh, 1991, 1992, 1994a, 1994b, 1994c;
Pai and Palazotto, 1995a, 1995b; Pai, 1995; Pai and Schulz, 1999; Pai et al., 1998). The structural
theories fully account for geometric nonlinearities due to large rotations, large in-plane strains of two-
dimensional structures, large axial strains of one-dimensional structures, initial curvatures, and
transverse shear deformations by using Jaumann stress and strain measures, an exact coordinate
transformation, and a new concept of orthogonal virtual rotations. The Jaumann strains are derived
using a new concept of local displacements without performing polar decomposition and they are
proved to be a corotated geometric objective measure. A corotated point reference frame is de®ned
using the symmetry of Jaumann strains. Moreover, there is no need for transformation before updating
strains, stresses, and displacements.

This paper presents a total-Lagrangian formulation of beam elements, large static deformation test
set-ups and experimental results, and numerical solutions from GESA.

2. Reference-line deformations

Deformation of a beam consists of its reference line deformation and the in-plane and out-of-plane
warpings of its cross section with respect to the plane perpendicular to the deformed reference line.
Di�erent approximations of the reference line deformation result in di�erent geometrically nonlinear
beam theories. Di�erent approximations of the out-of-plane warpings result in di�erent shear-
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deformable beam theories. In this section we show how to describe exactly the deformation of an
initially curved and twisted reference line.

2.1. Coordinate transformations and curvatures

In the absence of in-plane and out-of-plane warpings, a di�erential beam element is a rigid thin `plate'
having an in®nitesimal thickness and a ®xed ®nite area and is perpendicular to the reference line before
and after deformation. Hence, the motion of such a beam element can be described by three
translational displacements and three rotations. As in rigid-body dynamics, three or two consecutive
Euler angles can be used to describe the rotation of such a rigid `plate' from the undeformed position to
the deformed position.

We consider the initially curved and twisted beam depicted in Fig. 1. To describe the reference line
deformation and the rotations of the observed rigid cross-section, two coordinate systems are needed;
the system xyz describes the undeformed system con®guration and the system xZz describes the
deformed system con®guration. The system xyz is an orthogonal curvilinear coordinate system in which
the axis x is the reference line formed by connecting the reference points of all cross sections of the
undeformed beam; and the system xZz is a local orthogonal curvilinear coordinate system in which the
axis x represents the deformed reference line and the axes Z and z represent the deformed con®gurations
of the axes y and z with no cross-section warping. The system XYZ is a rectangular coordinate system
used for reference purpose in the calculation of initial curvatures. We let ia, ib, and ic denote the unit

Fig. 1. Three coordinate systems are used in the modeling: XYZ is a rectangular coordinate system used for reference; xyz is an or-

thogonal curvilinear frame, where the x-axis represents the undeformed reference line; and xZz is an orthogonal curvilinear frame,

where the x-axis represents the deformed reference line.

P.F. Pai et al. / International Journal of Solids and Structures 37 (2000) 2951±29802954



vectors of the system XYZ; ix, iy, and iz denote the unit vectors of the system xyz; and i1, i2, and i3
denote the unit vectors of the system xZz. Furthermore, s denotes the undeformed arc length along the
axis x from the root of the beam to the observed element, and u, v and w represent the displacement
components of the reference point (i.e., the origin of the system xyz ) of the observed cross section with
respect to the axes x, y, and z, respectively.

The undeformed position vector ÅR of the reference point of the observed cross section is assumed to
be known and given by

ÅR � A�s�ia � B�s�ib � C�s�ic: �1�
Also, the angles y21, y22 and y23 of the y-axis with respect to the XYZ system are assumed to be

known and given by

y21�s� � cosÿ1�iy � ia�, y22�s� � cosÿ1�iy � ib�, y23�s� � cosÿ1�iy � ic�, �2�
where 0 R y2i R 1808. It follows from Eq. (1) that

ix � ÅR
0 � A 0ia � B 0ib � C 0ic, �3�

where ( ) '0@( )/@s. Using Eqs. (2) and (3) and the identity iz=ix� iy, we obtain8<: ix
iy
iz

9=; � �T x�
8<: ia

ib
ic

9=;, �4�

where the transformation matrix [Tx ] is given by

�T x�s�� �
24A 0 B 0 C 0

cos y21 cos y22 cos y23
B 0 cos y23 ÿ C 0 cos y22 C 0 cos y21 ÿ A 0 cos y23 A 0 cos y22 ÿ B 0 cos y21

35: �5�

Using Eq. (4) and the orthonormality property of ix, iy, and iz (e.g., i 0x � ix � 0 and i 0x � iy�ÿi 0y � ix), we
obtain

d

ds

8<: ix
iy
iz

9=; � �k�
8<: ix

iy
iz

9=;, �k� �
24 0 k3 ÿk2
ÿk3 0 k1
k2 ÿk1 0

35, �6�

where k1, k2, and k3 are the initial curvatures with respect to the axes x, y and z, respectively, and they
are given by

k1�s� � diy

ds
� iz � dT x

2i

ds
T x

3i, k2�s� � ÿ
dix

ds
� iz � ÿdT x

1i

ds
T x

3i, k3�s� �
dix

ds
� iy � dT x

1i

ds
T x

2i: �7�

In Eq. (7) and hereafter, unless otherwise stated, the repeated subscript indices imply summations.
Moreover, the deformed coordinate system xZz and the undeformed coordinate system xyz are related

by the transformation matrix [T ] derived by using two Euler angles as (Alkire, 1984; Pai and Nayfeh,
1994b)8<: i1

i2
i3

9=; � �T �
8<: ix

iy
iz

9=;, �T � �
24T11 T12 T13

T21 T22 T23

T31 T32 T33

35, �8�
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where

�T � �
24 1 0 0
0 cos f sin f
0 ÿsin f cos f

3524T11 T12 T13

ÿT12 T11 � T 2
13=�1� T11� ÿT12T13=�1� T11�

ÿT13 ÿT12T13=�1� T11� T11 � T 2
12=�1� T11�

35 �9�

T11 � 1� u 0 ÿ vk3 � wk2
1� e

, T12 � v 0 � uk3 ÿ wk1
1� e

, T13 � w 0 ÿ uk2 � vk1
1� e

�10�

e �
��������������������������������������������������������������������������������������������������������������������������
�1� u 0 ÿ vk3 � wk2 �2��v 0 � uk3 ÿ wk1�2��w 0 ÿ uk2 � vk1�2

q
ÿ 1: �11�

Here, e is the axial strain along the axis x, and f is an Euler angle (see Fig. 1) related to the twisting
with respect to the deformed reference axis x (Alkire, 1984; Pai and Nayfeh, 1994b). It follows from
Eqs. (8) and (9) that T2i and T3i can be represented in terms of T11, T12, T13 and f as

T21 � ÿcos fT12 ÿ sin fT13,

T22 � cos f

�
T11 � T 2

13

1� T11

�
ÿ sin f

T12T13

1� T11
,

T23 � sin f

�
T11 � T 2

12

1� T11

�
ÿ cos f

T12T13

1� T11
,

T31 � sin fT12 ÿ cos fT13,

T32 � ÿsin f

�
T11 � T 2

13

1� T11

�
ÿ cos f

T12T13

1� T11

T33 � cos f

�
T11 � T 2

12

1� T11

�
� sin f

T12T13

1� T11
�12�

Di�erentiating Eq. (8) with respect to s and using Eq. (6) and the identity [T ]T=[T ]ÿ1, we obtain

@

@s

8<: i1
i2
i3

9=; � �K �
8<: i1

i2
i3

9=;, �13a�

�K � �
24 0 r3 ÿr2
ÿr3 0 r1
r2 ÿr1 0

35 � �T � 0�T �T � �T ��k��T �T, �13b�

where r1 is the deformed twisting curvature, and r2 and r3 are the deformed bending curvatures with
respect to the system xZz. They are obtained as
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r1 � i 02 � i3 � T 02iT3i � T1iki

� f 0 � 1

�1� e��1� T11�
h
T13

ÿ
v 0 � k3uÿ k1w

� 0ÿT12

ÿ
w 0 ÿ k2u� k1v

� 0i� T1iki,

r2 � ÿi 01 � i3 � ÿT 01iT3i � T2iki

� ÿ1
1� e

h
T31

ÿ
u 0 ÿ k3v� k2w

� 0�T32

ÿ
v 0 � k3uÿ k1w

� 0�T33

ÿ
w 0 ÿ k2u� k1v

� 0i� T2iki

r3 � i 01 � i2 � T 01iT2i � T3iki

� 1

1� e

h
T21

ÿ
u 0 ÿ k3v� k2w

� 0�T22

ÿ
v 0 � k3uÿ k1w

� 0�T23

ÿ
w 0 ÿ k2u� k1v

� 0i� T3iki, �14�

where the orthogonality conditions, TmiTni=0, m$n, are used.

2.2. Orthogonal virtual rotations

To derive a set of governing equations describing motions along three perpendicular directions, the
concept of orthogonal virtual rotations needs to be introduced. When large deformations are involved,
curvatures are nonlinear functions of displacements and their spatial derivatives. Thus, to represent
variations of curvatures in terms of variations of displacements and their derivatives, orthogonal virtual
rotations are also needed. Variations of the unit vectors i1, i2 and i3 are due to virtual rigid-body
rotations of the coordinate system xZz and are given by8<: di1

di2
di3

9=; �
24 0 dy3 ÿdy2
ÿdy3 0 dy1
dy2 ÿdy1 0

358<: i1
i2
i3

9=;, �15�

where dy1, dy2 and dy3 are virtual rigid-body rotations with respect to the axes x, Z and z, respectively.
We note that dyi are in®nitesimal rotations and hence they are vector quantities. Moreover, dyi are
along three perpendicular directions and hence they are mutually independent. Using Eqs. (15), (8), (10)
and (12), we obtain that

dy1 � di2 � i3

� df� T13k3 � T12k2
1� e� T11 � eT11

duÿ T12k1
1� e� T11 � eT11

dvÿ T13k1
1� e� T11 � eT11

dw

� T13

1� e� T11 � eT11
dv 0 ÿ T12

1� e� T11 � eT11
dw 0,

dy2 � ÿdi1 � i3

� T33k2 ÿ T32k3
1� e

du� T31k3 ÿ T33k1
1� e

dv� T32k1 ÿ T31k2
1� e

dwÿ T31

1� e
du 0 ÿ T32

1� e
dv 0 ÿ T33

1� e
dw 0
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dy3 � di1 � i2

� T22k3 ÿ T23k2
1� e

du� T23k1 ÿ T21k3
1� e

dv� T21k2 ÿ T22k1
1� e

dw� T21

1� e
du 0 � T22

1� e
dv 0

� T23

1� e
dw 0:

�16�

2.3. Variation of axial strain and curvatures

It follows from Eqs. (11) and (10) that

de � T11

ÿ
du 0 ÿ k3dv� k2dw

�� T12

ÿ
dv 0 � k3duÿ k1dw

�� T13

ÿ
dw 0 ÿ k2du� k1dv

�
: �17�

Taking the variations of Eq. (14) and using di 0k��dik� 0 and Eqs. (15), (13a) and (13b), we obtain that

dr1 � �dy1� 0 ÿ r3dy2 � r2dy3,

dr2 � �dy2� 0 � r3dy1 ÿ r1dy3

dr3 � �dy3� 0 ÿ r2dy1 � r1dy2, �18�
where (dyi ) ' can be obtained using Eq. (16) and (du) '=du ', (dv) '=dv ', (dw) '=dw ', (du ') '=du0,
(dv ') '=dv0 and (dw ') '=dw0. Moreover, (df ) '=df ' because f is a rotation angle with respect to the x-
axis.

3. Total-Lagrangian ®nite-element formulation

The principle of virtual work states that (Washizu, 1982)

dp � dWnc, �19�
where P denotes the elastic energy and Wnc denotes the non-conservative energy due to external
distributed and/or concentrated loads.

3.1. Elastic energy

To fully account for geometric nonlinearities, we use Jaumann strains because they are fully
nonlinear, objective, and geometric strain measures and their directions are de®ned with respect to the
local coordinate system xZz (Pai and Palazotto, 1995a). The movement of a cross section consists of two
parts. The ®rst part is due to rigid-body displacements u, v, and w of the reference point and the
rotation angle f (see Fig. 1). This rigid-body motion rotates the sides dy and dz of the observed cross
section so that they are parallel to the Z- and z-axes, respectively. The second part is due to a local,
strainable displacement vector U, which consists of relative displacements with respect to the local
coordinate system xZz. Because the rigid-body motion does not result in any strain energy, to calculate
the elastic energy we only need to deal with the strainable, local displacement ®eld U. This local
displacement ®eld can be represented as
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U � u1i1 � u2i2 � u3i3

u1�s, y, z� � u01�s� � z�y2�s� ÿ y20�s�� ÿ y�y3�s� ÿ y30�s�� � g6y� g5z,

u2�s, y, z� � u02�s� ÿ z�y1�s� ÿ y10�s��

u3�s, y, z� � u03�s� � y�y1�s� ÿ y10�s��: �20�
Here, the Lagrangian coordinates s, y and z are used to express all functions because Jaumann strains

are de®ned using the undeformed length. Moreover, u1, u2 and u3 are local, strainable displacements
with respect to the x-, Z- and z-axes, respectively; u0i �s� � ui�s, 0, 0�, i = 1, 2, 3; y1, y2 and y3 are the
rotation angles of the observed cross section with respect to the x-, Z- and z-axes, respectively; and y10,
y20 and y30 are the initial rotation angles of the observed cross section with respect to the x-, Z- and z-
axes, respectively. Moreover, g5 and g6 are the energy-averaged shear rotation angles (Pai and Schulz,
1999) at the reference point with respect to the y- and ÿz-axes, respectively.

Because the system xZz is a local coordinate system attached to the observed cross section and the
unit vector i1 is tangent to the deformed reference axis, we have

u0i � yi0 � yi � @u02
@s
� @u03

@s
� 0, e � @u01

@s
, ri �

@yi
@s

, ki � @yi0
@s

, i � 1, 2, 3: �21�

It follows from Eqs. (20), (21), (13a), and (13b) that

@U

@s
� �e� z�r2 ÿ k2� ÿ y�r3 ÿ k3� � g 06y� g 05z

�
i1 � �ÿz�r1 ÿ k1� � yr3g6 � zr3g5�i2 � � y�r1 ÿ k1�

ÿ yr2g6 ÿ zr2g5�i3,

@U

@y
� g6i1

@U

@z
� g5i1: �22�

Without performing any complex polar decomposition (Malvern, 1969; Pai and Palazotto, 1995a),
Jaumann strains can be derived by using the local displacement ®eld as

B11 � @U

@s
� i1 � e� z�r2 ÿ k2� ÿ y�r3 ÿ k3� � g 06y� g 05z,

B12 � @U

@s
� i2 � @U

@y
� i1 � ÿz�r1 ÿ k1� � �1� yr3�g6 � zr3g5

B13 � @U

@s
� i3 � @U

@z
� i1 � y�r1 ÿ k1� ÿ yr2g6 � �1ÿ zr2�g5: �23�

This strain±displacement relation can be put in the following matrix form.
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8<:B11

B12

B13

9=; � �S �fcg, �24�

where

fcg � �e, g6, g5, r1 ÿ k1, r2 ÿ k2, r3 ÿ k3, g 06, g
0
5

	T �25a�

�S � �
24 1 0 0 0 z ÿy y z
0 1� yk3 zk3 ÿz 0 0 0 0
0 ÿyk2 1ÿ zk2 y 0 0 0 0

35: �25b�

Here, we replace r3 and r2 with k3 and k2 in Eq. (25b) to simplify the derivation. For thick beams,
curvatures will not have signi®cant changes before failure. For thin beams, curvatures may have
signi®cant changes before failure, but their shear deformations, g5 and g6, are negligible. Hence, this
approximation will not cause a signi®cant loss in accuracy. The stress±strain relation can be obtained as
(Whitney, 1987)8<: J11

J12
J13

9=; � � �Q�
8<:B11

B12

B13

9=;, � �Q� �
24 �Q11

�Q16
�Q15

�Q61
�Q66

�Q65
�Q51

�Q56
�Q55

35, �26�

where � �Q� is a 3 � 3 symmetric matrix reduced from the transformed material sti�ness matrix using the
assumption J22=J33=J23=0.

Using Eq. (26), we obtain that

dP �
�L
0

�
A

�J11dB11 � J12dB12 � J13dB13�dA ds �
�L
0

�
A

fdBgT� �Q�fBgdA ds, �27�

where A denotes the undeformed area of the cross section and L is the beam length. Substituting Eq.
(24) into Eq. (27) yields

dP �
�L
0

fdcgT�F�fcgds, �28�

where [F ] is an 8� 8 symmetric matrix given by

�F� �
�
A

�S �T� �Q��S �dA: �29�

The entries of [F ] are given in Appendix A. In a formulation that accounts for three-dimensional
stress e�ects due to in-plane and out-of-plane warpings (Pai and Nayfeh, 1994b), the expressions of {c }
and dP are the same as Eqs. (25a) and (28), but the matrix [F ] needs to be obtained using two-
dimensional sectional analyses (e.g., Giavotto et al., 1983).

It follows from Eqs. (25a) and (16)±(18), that

fdcg � �C�fdU g, �30�
where

fU g � �u, u 0, u 00, v, v 0, v 00, w, w 0, w 00, f, f 0, g5, g 05, g6, g 06	T: �31�
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The entries Cij (=@ci/@Uj ) of [C ] are given in Appendix B. Substituting Eq. (30) into Eq. (28) yields

dP �
�L
0

fdU gT�C�T�F�fcgds: �32�

The way that the components of {U } are approximated de®nes the type of a speci®c ®nite element.
Using the ®nite-element discretization scheme, we discretize the displacements as

fu, v, w, f, g5, g6gT � �N �fq� j �g, �33�

where {q [ j ]} is the nodal displacement vector of the jth element and [N ] is a matrix of one-dimensional
®nite-element interpolation or shape functions, which are in terms of natural coordinates. To keep the
virtual rotations continuous, it follows from Eq. (16) that u ', as well as v ' and w ', need to be
continuous. Hence, we choose

fq� j �g �
n
u� j �, v� j �, w� j �, f� j �, w 0 � j �, v 0 � j �, u 0 � j �, g� j �5 , g� j �6 u� j�1�, v� j�1�, w� j�1�, f� j�1�, w 0 � j�1�,

v 0 � j�1�, u 0 � j�1�, g� j�1�5 , g� j�1�6

oT
,

�34�

where u (m ) denotes the displacement component u of the mth global node and two-node elements are
assumed to be used. Comparing with linear ®nite-element models of beams in three-dimensional space
that account for shear deformations, u ' is the only additional degree of freedom used at each node in
this nonlinear model. Numerical experience shows that the use of u ' increases the element size that can
converge in incremental/iterative solution procedures. The reason is that the use of u ' ensures the
continuity of rotations at each node because [T ] (see Eqs. (9) and (10)) is a function of u ' as well as v '
and w '. Substituting Eq. (33) into Eq. (31) yields

fU g � �D�fq� j �g, �D� � �@ ��N �, �35�

where [D ] is a 15 � 18 matrix, [N ] is a 6 � 18 matrix, and [@] is a 15 � 6 matrix consisting of partial
di�erentiation operators. Substituting Eq. (35) into Eq. (32) yields

dP �
XNe

j�1

�
L� j �
fdq� j �gT�D�T�C�T�F�fcgds �

XNe

j�1
fdq� j �gT�K � j ��fq� j �g � fdqgT�K �fqg, �36�

where

�K � j ��fq� j �g �
�
L� j �
�D�T�C�T�F�fcgds: �37�

Ne is the total number of elements, L [ j ] is the length of the jth element, [K [ j ]] is the sti�ness matrix
of the jth element, [K ] is the structural (global) sti�ness matrix, and {q } is the structural (global)
displacement vector. We note that [K [ j ]] is not explicitly written and may be asymmetric.

The governing equations need to be linearized and solved by incremental/iterative methods because
the structural sti�ness matrix is a nonlinear function of displacements. To derive linearized incremental
equations, we let
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fq� j �g � fq0g � fDq� j �g

fU g � fU 0g � fDU g, �38�
where {q 0} denotes the equilibrium solution and {Dq [ j ]} the increment displacement vector. Then, we
obtain the ®rst-order expansions of {c } and [C ] as

fcg � fc0g � �C0�fdU g �39�

�C� � �C0� � �X�, �40�
where the entry Xij of [X ] is given by

Xij � @2ci

@Uj@Uk
DUk: �41�

Then, we use Eqs. (39) and (40) to expand Eq. (37) into

�K � j ��fq� j �g �
�
L� j �

�
�D�T �C0�T�F�fc0g � �D�T�C0�T�F��C0�fDU g � �D�T�X�T�F�fc0g

�
ds: �42�

Using Eq. (41) and [F ]=[F ]T, one can prove that

�X�T�F�fc0g � �U�fDU g, �43�
where [U ] is a symmetric matrix and its entry, Uij, is given by

Uij � Uji � c0
mFmn

@2c0
n

@Ui@Uj
� c0

mFmn
@C0

ni

@Uj
: �44�

Hence, substituting Eq. (43) into Eq. (42) yields

�K � j ��fq� j �g � � �K� j ��fDq� j �g � �K � j ��fq� j �gjfq� j �g�fq0g, �45�

where � �K� j �� is the so-called elemental tangent sti�ness matrix and is given by

� �K� j �� �
�
L� j �
�D�T��C0�T�F��C0� � �U���D�ds �46�

�K � j ��fq� j �gjfq� j �g�fq0g �
�
L� j �
�D�T�C0�T�F�fc0gds: �47�

We note that � �K� j �� is a symmetric matrix.

3.2. External loads

It follows from Eqs. (16), (31) and (35) that the variation of non-conservative energy due to external
loads is
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dWnc �
�L
0

�r1du� r2dv� r3dw� r4dy1 � r5dy2 � r6dy3�ds �
�L
0

fdU gTf �Rgds �
XNe

j�1
fdq� j �gTfR� j �g

� fdqgTfRg, �48�

where r1, r2 and r3 are distributed and/or concentrated external loads along the x-, y- and z-axes,
respectively, and r4, r5 and r6 are distributed and/or concentrated twisting and bending moments. The
entries of f �Rg are shown in Appendix C, {R [ j ]} is the elemental nodal loading vector, and {R } is the
structural nodal loading vector. Furthermore,

fR� j �g �
�
L� j �
�D�Tf �Rgds: �49�

Because dyi are nonlinear functions of displacements, parametric loadings exist when ®nite rotations
are involved.

3.3. Incremental-iterative solution method

An incremental/iterative method is used to solve the derived nonlinear governing equations. With the
use of a loading parameter l, the governing equation of a static problem can be stated as

�K �fqg � lfRrg, �50�
where {Rr } is a reference load vector. Let

fqg � fqgi � fq0g � fDqgi � fqgiÿ1 � fdqgi �51a�

l � li � l0 � Dli � liÿ1 � dli, �51b�
where ir2, i is the number of iterations in searching for a converged solution when the load increases
from l=l 0 to l=l 0+dli, {q

0} denotes the equilibrium solution corresponding to l=l 0, {q }i denotes
the iterated estimated solution corresponding to l=li, and {Dq }i denotes the incremental displacement
vector corresponding to the increment Dli=liÿl 0 of the loading parameter. Substituting Eqs. (51a) and
(51b) into Eq. (50), expanding the result into a Taylor series and neglecting higher-order terms, we
obtain

�K̂�iÿ1fdqgi � dlifRrgiÿ1 � fggiÿ1, �52�
where

fggiÿ1 � liÿ1fRrgiÿ1 ÿ ��K �fqg�iÿ1

�K̂�iÿ1 � � �K�iÿ1 ÿ liÿ1� �K�iÿ1: �53�
Here � �K� is due to parametric loadings (some examples are shown in Section 5), �K̂�iÿ1 is the total
tangent sti�ness matrix, and the subindecies indicate the state, e.g., �K̂�iÿ1 � �K̂�fqg � fqgiÿ1, l � liÿ1: To
obtain {dq }i and li, we use an alternative version of Riks' method (Lee, 1992; Riks, 1979) to solve Eq.
(52) and a constraint equation

fDqgTiÿ1fdqgi � Dliÿ1dlifRrgTiÿ1fRrgiÿ1 � 0, �54�
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which limits the arc-length increment by con®ning the current searching direction to be perpendicular to
the previous accumulated searching direction (Riks, 1979).

4. Experimental set-ups

The ¯exibility of HFSs makes it di�cult to measure displacements by conventional means. For
example, any indicator that carries a small spring force does not supply accurate readings because the
spring force results in a signi®cant structural deformation. Electronic strain gages change the structural
sti�ness, and they cannot reveal rigid-body deformations because they only measure relative straining
displacements. Air gages apply a force to the structure and deform the structure signi®cantly. Laser
gauging is an option because it is a non-contacting method, but the equipment is expensive and it is
di�cult to chase the measuring point when large rotations are involved. Several of these methods were
evaluated, based on the goal of measuring large deformations of beams and frames, and some of them
were actually tried. We ®nally decided to build di�erent ®xtures for bending and twisting tests.

4.1. Bending tests

For bending tests, we built an accurate reference metal frame that can be used to ®x the test structure
and to measure three-dimensional displacements from the frame, as shown in Fig. 2. The two circular
slots on the vertical wall can be used to ®x the beam root ®xture at di�erent angles and hence di�erent
loading conditions can be tested. Choosing an appropriate instrument to take the readings is another
challenging issue. A vernier scale was chosen in the beginning, but its resolution is only 0.0078 in and it
is di�cult to judge the instruments proximity to the structure. If the instrument does not contact the
structure and a sight of some kind is used, parallax is a problem. We chose to use a dial caliper with a
brass probe mounted on the tip, a series circuit, and an indicator lamp to ascertain the immediate
contact of the probe and the structure. In measuring displacements, the probe is slowly moved toward
the structure until the lamp lights.

4.2. Twisting tests

For twisting tests, we built a ®xture that is convenient for applying large torsional loads, as shown in

Fig. 2. The set-up for bending tests.
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Fig. 3 with a circular band twisted about its diameter. The ®xture consists of a rigid base, two parallel
rods, and a carriage that slides on the rods with bearings. The carriage can be locked at any location
along the rods. A shaft is mounted in the middle of the carriage on precision bearings. A clamp is ®xed
to the rigid base and grips the circular band. Another clamp is ®xed on one end of the shaft. These two
clamps are designed to allow the band to de¯ect as freely as possible. A pulley is ®xed in the middle of
the shaft and provides a moment to the band when weights are hung from a cable that wraps around
the pulley. A lever arm with a one-way clutch goes on the other end of the shaft. The one-way clutch
allows the shaft to turn in only one direction. The moment caused by the weight of the lever arm is
accounted for in the measurements.

5. Numerical and experimental results

5.1. Bending of a cantilevered isotropic beam

For an initially straight cantilever beam subjected to an end bending moment M2 with respect to the
y-axis (see Fig. 4), we have v=v '=f=g6=0 and the boundary conditions are

Fig. 3. The set-up for twisting tests.

Fig. 4. A cantilevered isotropic beam subjected to an end bending moment.
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u � v � w � f � w 0 � v 0 � g5 � g6 � 0 at x � 0: �55�
It follows from Eqs. (10)±(12) and (16) that, at the tip end (i.e., x=L ),

T11 � T33 � 1� u 0

1� e
, T13 � ÿT31 � w 0

1� e
, T12 � 0, 1� e �

��������������������������������
�1� u 0 �2 � w 0 2

q
, y � cosÿ1 T11,

M2dy2 �M2

"
w 0

�1� u 0 �2 � w 0 2
du 0 ÿ 1� u 0

�1� u 0 �2 � w 0 2
dw 0

#
,

�56�

where y denotes the tip rotation angle. Hence, the non-zero entries of fR�Ne�g are

R�Ne�
14 �

ÿM̂2�1� u 0 �
�1� u 0 �2 � w 0 2

, R�Ne�
16 �

M̂2w
0

�1� u 0 �2 � w 0 2
, �57�

where M̂2 is a chosen reference twisting moment and the actual twisting moment is M2 and M2 � lM̂2:

Moreover, the non-zero entries of � �K�Ne�� are

�K
�Ne�
14, 14 � ÿ �K

�Ne�
16, 16 �

2M̂2w
0�1� u 0 �

��1� u 0 �2 � w 0 2�2 ,
�K
�Ne�
14, 16 � �K

�Ne�
16, 14 �

M̂2��1� u 0 �2 ÿ w 0 2�
��1� u 0 �2 � w 0 2�2 : �58�

We note that Eqs. (56)±(58) are given here only to show an example of � �K� in Eq. (53). Users do not
need to provide or derive such equations in order to use the ®nite-element code because the variations
of �Ri in Eq. (C1) are also computed by the code. Users only need to provide the geometric boundary
conditions (e.g., Eq. (55)), which are the same as those used in linear ®nite-element analysis.

The beam is modeled using 11 equal elements with the shear correction factor c2=0.83333 (see
Appendix A). Fig. 4 shows that the deformed con®gurations are circular arcs, as predicted by theory.
Here EI22 denotes the bending sti�ness with respect to the y-axis. The exact load-de¯ection (M2±y2)
curve is a straight line, and the ®nite-element solution agrees closely with the exact solution.

5.2. Flexure of cantilevered composite beams

We consider the 56 cm � 3 cm laminated composite cantilevered beam tested by Minguet and
Dugundji (1990). The beam is modeled using 11 elements (10 � 5 cm+1 � 6 cm (free end)), and the
properties of the graphite±epoxy plies are:

E11=142 GPa E22=9.8 GPa E33=9.8 GPa
n12=0.3 n13=0.3 n23=0.35
G12=6 GPa G13=6 GPa G23=3.63 GPa
Layer thickness=0.124 mm.

The shear correction factors (see Appendix A) can be obtained to be c1=c2=0.83333, c3=0 and
c4=0.00958 for the [08/908]3s beam, and c1=0.83333, c2=0.498, c3=1 and c4=0.00958 for the [458/08]3s
beam (Pai and Schulz, 1999).

Fig. 5 shows the displacements u, v and w (along the x-, y- and z-axes) of Node 11 (at s=50 cm) of a
[08/908]3s beam, and Fig. 6 shows the displacements of Node 11 of a [458/08]3s beam. Because of the
symmetric layup with angle plies, the displacement v in Fig. 6 (perpendicular to the loading plane)
occurs due to bending±torsion coupling. These numerical results agree closely with the experimental
results of Minguet and Dugundji (1990). However, for the [458/08]3s beam, there is a signi®cant
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di�erence between the measured and theoretical values of u. Minguet and Dugundji (1990) directly
solved a set of fully nonlinear governing equations using a ®nite-di�erence method and their solution for
u has the same di�erence between the measured and theoretical values. Although Minguet and Dugundji
(1990) did not fully account for transverse shear deformations in their numerical solutions, we found
that transverse shear deformations are negligible for this speci®c thin beam. Hence, we suspect that
there are some measuring errors or manufacturing defects in the test specimen.

5.3. Flexure of a cantilevered isotropic beam

To test large deformations of ¯exible beams without concerning manufacturing defects too much, we
chose to test a very ¯exible 150 � 20 � 0.020 spring steel cantilever beam. Since the Young's modulus E
was not known, we measured the mass density r to be r=0.271 lb/in3. Then we performed a linear
vibration test to obtain natural frequencies by using a modal hammer, a proximity sensor, and a DP420

Fig. 5. The displacements of Node 11 (at s=50 cm) of a [08/908]3s beam.

Fig. 6. The displacements of Node 11 (at s=50 cm) of a [458/08]3s beam.
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FFT analyzer to obtain a Frequency Response Function (FRF). Using the derived mass density, the
®rst few natural frequencies from the measured FRF, and the formula of linear natural frequencies of a
cantilever beam, we obtain that E=2.84� 107 psi.

The displacements were measured at ®fteen locations in 10 increments along the beam. Measurements
were taken from the metal frame (see Fig. 2) to each point on the reference line of the beam using the
modi®ed dial caliper. Initial displacements due to imperfection in the sample were measured and
recorded. Then load was applied in increments of 10 g up to a maximum of 100 g. For each load,
longitudinal, horizontal, and vertical displacements with respect to the metal frame were measured, and
then displacements u, v and w with respect to the beam coordinate system xyz are obtained using
coordinate transformation. Three di�erent measurements were taken and the results were averaged. The
displacements due to imperfection were subtracted from the averaged displacements of each point under
each load.

Fig. 7(a) shows the load±de¯ection curves when the root ®xture is ®xed at zero degree, where symbols
denote experimental data and solid lines are ®nite-element solutions using eleven equal beam elements
and c1=c2=0.83333, c3=0 and c4=0.0004. Fig. 7(b) shows the deformed geometry when the applied
transverse end load is 0.22 lbf. In¯uence of transverse shear deformations was investigated in the ®nite
element analysis. It was found that transverse shear deformations are negligible for this thin ¯exible
beam.

Fig. 8 shows the numerical and experimental load±de¯ection curves with the root ®xture ®xed at
di�erent angles. The no-load de¯ection is due to gravity. We note that the ®nite-element results agree
closely with the experimental results.

5.4. Twisting of an isotropic circular band

To test large torsional deformations of beams, we chose to test a circular band twisted by an angle y
at one end of a diameter and an angle ÿy at the other end with the distance between these two ends
being ®xed, as shown in Fig. 9. The band is made of a 48.690 � 0.2120 � 0.0280 straight steel strip by
welding its two ends together, and hence the radius is r=7.750. The Young's modulus and mass density
are experimentally obtained to be E=2.276� 107 psi and r=0.2507 lb/in3. The shear correction factors
(see Appendix A) are calculated to be c1=c2=0.8333, c3=0, and c4=0.0617.

Because of the symmetry of the structure and the antisymmetry of the applied moment, only one
quarter of the ring needs to be modeled. The initial curvatures are k1=k3=0 and k2=1/r. The boundary
conditions are

u � v � w � f � g5 � w 0 � 0 at a � 08

u � v � f � g5 � w 0 � 0 at a � 908: �59�
It follows from Eqs. (59) and (10)±(12) that, at the two ends where the twisting moment M3 is

applied,

T11 � T22 � 1� u 0

1� e
, T12 � ÿT21 � v 0

1� e
, T13 � 0, 1� e �

�������������������������������
�1� u 0 �2 � v 0 2

q
, y � cosÿ1 T11,

M3dy3 �M3

"
ÿv 0

�1� u 0 �2 � v 0 2
du 0 � 1� u 0

�1� u 0 �2 � v 0 2
dv 0
#
:

�60�

Hence, the non-zero entries of {R [1]} are
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R�1�6 �
M̂3�1� u 0 �
�1� u 0 �2 � v 0 2

, R�1�7 �
ÿM̂3v

0

�1� u 0 �2 � v 0 2
, �61�

where M̂3 is a chosen reference twisting moment and the actual twisting moment is M3 and M3 � lM̂3:

Moreover, the non-zero entries of � �K�1�� are

�K
�1�
66 � ÿ �K

�1�
77 �

ÿ2M̂3v
0�1� u 0 �

��1� u 0 �2 � v 0 2�2 ,
�K
�1�
67 � �K

�1�
76 �

M̂3�v 0 2 ÿ �1� u 0 �2�
��1� u 0 �2 � v 0 2�2 : �62�

We note again that users of this ®nite-element code only need to provide the geometric boundary
conditions in Eq. (59), not those in Eqs. (60)±(62).

A special test sequence was used in using the set-up shown in Fig. 3 because the load±de¯ection has
both positive (stable) and negative (unstable) slopes. In the regions of negative slope we could not apply

Fig. 7. Deformation of a cantilevered beam subjected to an end load with the root ®xture ®xed at 08: (a) load±de¯ection curves,

and (b) the deformed con®guration when F=0.22 lbf.
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a moment then measure the angle because the system is unstable. Hence an angle was set ®rst, and then
weights were applied to the pulley cable until a slight gap was observed between the lever arm and the
stop. The actual load at the angle setting was between the load that caused the gaping and the next
lower load. This bracketed the load to within 0.022 lb (10 g). This lead to a moment resolution of
0.0827 lbfÐin. We made these measurements at approximately 108 intervals over the total relative twist
2y=3608. Even with considerable care in the manufacturing and building of the set-up shown in Fig. 3,
the test ®xture is not perfect. There are three e�ects that need to be accounted for in correcting the

Fig. 8. Load±de¯ection curves of the tip point of the cantilevered beam with the root ®xture ®xed at: (a) 308, (b) 458 and (c) 608.
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measured data. One is the bearing friction that is equivalent to a nearly constant 0.1593 lbfÐin.
Another is an unbalance in the pulley, which changes as the applied angle changes. This requires a
correction of 0.2036 sin(2yÿ208) lbfÐin. A third correction accounts for the length of cable that hangs
from pulley, which increases linearly with the applied angle. This correction is 0.04779y lbfÐin.

Fig. 10 shows the obtained normalized load±de¯ection curve, where gravity is neglected. A multiple
shooting method (Pai and Palazotto, 1996) is also used to solve this problem. Although transverse shear
deformations are neglected in the solution using the multiple shooting method, the solution still can be
considered to be numerically exact because shear deformations are found in the ®nite-element analysis
to be negligible for this thin isotropic beam. The di�erence between the numerical and experimental
results is signi®cant when y is close to 1808. We note that, when the load is released in the experiment,
the band springs back to its original shape with a bit of detectable asymmetric permanent deformation
due to yielding. The asymmetry is due to yielding near the welded end that is gripped by one of the
clamps. The plastic deformation began approximately at y=1508, which was not accounted for in this
nonlinear elastic analysis. Fig. 11 shows the solutions of deformed curvatures using the multiple
shooting method (thick lines) and the ®nite-element method (thin lines). We note that the deformed
twisting curvature r1 is high, especially at a=08, 908 and 1808. Because of the large twisting curvature at
a=08, the use of linear shape functions (see Eqs. (33) and (34)) for f limits the sizes of elements. It also
explains why the result of using 26 non-uniform elements is better than that of using 30 uniform
elements in Fig. 10. Results also show that the ®nite-element solution in Fig. 11 can be improved by
using ®ner elements around the loading end.

Fig. 12 shows the experimental deformed con®gurations corresponding to di�erent twisting angles.
The left end was ®xed and the right end was rotated from 08 to 3608. The pictures were taken from the
top of the set-up. Fig. 13 shows the front, top, side, and three-dimensional views of the ®nite-element
solution of the deformed half band when y=1708, which are close to that in Fig. 12 for 2y=3308. In
general the ®nite-element solutions agree closely with the experimental results.

6. Concluding remarks

A total-Lagrangian displacement-based ®nite-element model of general anisotropic beams undergoing

Fig. 9. A circular band is twisted through an angle of y at both ends of a diameter, where the distance between these two ends is

®xed.
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large displacements and rotations is derived. Large bending and twisting tests on ¯exible straight and
curved beams have been performed. The ®nite-element results agree closely with the experimental
results. However, to fully verify the ®nite-element model tests on other di�erent beams are necessary,
especially ¯exible composite beams with elastic bending±torsion and extension±torsion couplings.
Analysis of frame structures is currently under study, which requires matching the transformation
matrices [T ] of two adjacent beam elements at the connecting node.

Appendix A

�F� �
�
A

�S �T� �Q��S �dA, �A1�

�S �T� �Q��S � �

2666666666664

�Q11
�Q16

�Q15 R1 z �Q11 ÿy �Q11 y �Q11 z �Q11

c1 �Q66 c3 �Q56 R2 z �Q16 ÿy �Q16 y �Q16 z �Q16

c2 �Q55 R3 z �Q15 ÿy �Q15 y �Q15 z �Q15

c4� yR3 ÿ zR2� zR1 ÿyR1 yR1 zR1

z2 �Q11 ÿyz �Q11 yz �Q11 z2 �Q11

y2 �Q11 ÿy2 �Q11 ÿyz �Q11

sym: y2 �Q11 yz �Q11

z2 �Q11

3777777777775
�

Fig. 10. The load±de¯ection curve of the circular band.
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266666666664

0 R4 R5 0 0 0 0 0
c1�2R6 � yk3R6 ÿ yk2R8� c3�R7 � R8 � yk3R7 ÿ yk2R9� yR8 ÿ zR6 zR4 ÿyR4 yR4 zR4

c2�2R9 � zk3R7 ÿ zk2R9� yR9 ÿ zR7 zR5 ÿyR5 yR5 zR5

0 0 0 0 0
0 0 0 0

0 0 0
sym: 0 0

0

377777777775

Fig. 11. The distributions of deformed curvatures of the circular band: (a) when y=1428, and (b) when y=1708 (thick lines are sol-

utions using the multiple shooting method, and thin lines are solutions using the ®nite element method).
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R1 � y �Q15 ÿ z �Q16, R2 � y �Q56 ÿ z �Q66, R3 � y �Q55 ÿ z �Q56, R4 � y
ÿ
k3 �Q16 ÿ k2 �Q15

�
,

R5 � z
ÿ
k3 �Q16 ÿ k2 �Q15

�
, R6 � y

ÿ
k3 �Q66 ÿ k2 �Q56

�
, R7 � z

ÿ
k3 �Q66 ÿ k2 �Q56

�
,

R8 � y
ÿ
k3 �Q56 ÿ k2 �Q55

�
, R9 � z

ÿ
k3 �Q56 ÿ k2 �Q55

�
:

�A2�

Fig. 12. Experimental deformed geometries of the circular band at di�erent total twisting angle 2y: (a) 2y=908, (b) 2y=1508, (c)
2y=1808, (d) 2y=2708, (e) 2y=3308 and (f) 2y=3608.
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Here, c1, c2 and c3 are shear correction factors used to account for the higher-order e�ects due to
warpings, c4 is used to account for the higher-order e�ects on the torsional rigidity (Timoshenko and
Goodier, 1970), and the in¯uences of higher-order e�ects on other rigidities are neglected. The shear
correction factors can be calculated using an energy-equivalent ®rst-order shear-deformation theory (Pai
and Schulz, 1999).

Appendix B

Using Eqs. (17), (18) and (16) and the fact that dci=@ci/@UjdUj=CijdUj, we obtain the following
non-zero elements of [C ]. Here, we use two digits to represent one subindex number of Cij. For
example, Cij|i = 1, j = 2 is represented by C0102.

Fig. 13. Di�erent views of the ®nite-element solution of the deformed geometry of the half circular band twisted by y=1708 at

both ends (thin curves represent the undeformed geometry).
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C0101 � T12k3 ÿ T13k2,

C0102 � T11,

C0104 � T13k1 ÿ T11k3,

C0105 � T12,

C0107 � T11k2 ÿ T12k1,

C0108 � T13,

C0401 �
�

T13k3 � T12k2
1� e� T11 � eT11

� 0
�T22k3 ÿ T23k2

1� e
r2 ÿ

T33k2 ÿ T32k3
1� e

r3,

C0402 � T21r2 � T31r3
1� e

� T13k3 � T12k2
1� e� T11 � eT11

,

C0404 � ÿ
�

T12k1
1� e� T11 � eT11

� 0
�T23k1 ÿ T21k3

1� e
r2 ÿ

T31k3 ÿ T33k1
1� e

r3,

C0405 � T22r2 � T32r3
1� e

ÿ T12k1
1� e� T11 � eT11

�
�

T13

1� e� T11 � eT11

� 0
,

C0406 � T13

1� e� T11 � eT11
,

C0407 � ÿ
�

T13k1
1� e� T11 � eT11

� 0
�T21k2 ÿ T22k1

1� e
r2 ÿ

T32k1 ÿ T31k2
1� e

r3,

C0408 � T23r2 � T33r3
1� e

ÿ T13k1
1� e� T11 � eT11

ÿ
�

T12

1� e� T11 � eT11

� 0
,

C0409 � ÿ T12

1� e� T11 � eT11
,

C0411 � 1,

C0501 �
�
T33k2 ÿ T32k3

1� e

� 0
� T13k3 � T12k2
1� e� T11 � eT11

r3 ÿ
T22k3 ÿ T23k2

1� e
r1,
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C0502 � ÿT21r1
1� e

� T33k2 ÿ T32k3
1� e

ÿ
�

T31

1� e

� 0
,

C0503 � ÿ T31

1� e
,

C0504 �
�
T31k3 ÿ T33k1

1� e

� 0
ÿ T12k1
1� e� T11 � eT11

r3 ÿ
T23k1 ÿ T21k3

1� e
r1,

C0505 � T13r3
1� e� T11 � eT11

ÿ T22r1
1� e

� T31k3 ÿ T33k1
1� e

ÿ
�

T32

1� e

� 0
,

C0506 � ÿ T32

1� e
,

C0507 �
�
T32k1 ÿ T31k2

1� e

� 0
ÿ T13k1
1� e� T11 � eT11

r3 ÿ
T21k2 ÿ T22k1

1� e
r1,

C0508 � ÿ T12r3
1� e� T11 � eT11

ÿ T23r1
1� e

� T32k1 ÿ T31k2
1� e

ÿ
�

T33

1� e

� 0
,

C0509 � ÿ T33

1� e
,

C0510 � r3,

C0601 �
�
T22k3 ÿ T23k2

1� e

� 0
ÿ T13k3 � T12k2
1� e� T11 � eT11

r2 �
T33k2 ÿ T32k3

1� e
r1,

C0602 � ÿT31r1
1� e

� T22k3 ÿ T23k2
1� e

�
�

T21

1� e

� 0
,

C0603 � T21

1� e
,

C0604 �
�
T23k1 ÿ T21k3

1� e

� 0
� T12k1
1� e� T11 � eT11

r2 �
T31k3 ÿ T33k1

1� e
r1,

C0605 � ÿ T13r2
1� e� T11 � eT11

ÿ T32r1
1� e

� T23k1 ÿ T21k3
1� e

�
�

T22

1� e

� 0
,
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C0606 � T22

1� e
,

C0607 �
�
T21k2 ÿ T22k1

1� e

� 0
� T13k1
1� e� T11 � eT11

r2 �
T32k1 ÿ T31k2

1� e
r1,

C0608 � T12r2
1� e� T11 � eT11

ÿ T33r1
1� e

� T21k2 ÿ T22k1
1� e

�
�

T23

1� e

� 0
,

C0609 � T23

1� e
,

C0610 � ÿr2,

C0214 � 1,

C0312 � 1,

C0715 � 1

C0813 � 1, �B1�
where

e 0 � T11

ÿ
u 00 ÿ v 0k3 ÿ vk 03 � w 0k2 � wk 02

�� T12

ÿ
v 00 � u 0k3 � uk 03 ÿ w 0k1 ÿ wk 01

��
T13

ÿ
w 00 ÿ u 0k2 ÿ uk 02 � v 0k1 � vk 01

� �B2�

24T 011 T 012 T 013
T 021 T 022 T 023
T 031 T 032 T 033

35 � �K ��T � ÿ �T ��k�: �B3�

Eq. (B2) is obtained by using Eqs. (10) and (11), and Eq. (B3) is obtained by post-multiplying Eq.
(13b) by [T ] and using the identity [T ]T=[T ]ÿ1.

Appendix C

The non-zero entries of f �Rg in Eq. (48) are given below:

�R1 � r1 � r4
T13k3 � T12k2

1� e� T11 � eT11
� r5

T33k2 ÿ T32k3
1� e

� r6
T22k3 ÿ T23k2

1� e
,

�R2 � ÿr5 T31

1� e
� r6

T21

1� e
,
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�R4 � r2 ÿ r4
T12k1

1� e� T11 � eT11
� r5

T31k3 ÿ T33k1
1� e

� r6
T23k1 ÿ T21k3

1� e
,

�R5 � r4
T13

1� e� T11 � eT11
ÿ r5

T32

1� e
� r6

T22

1� e
,

�R7 � r3 ÿ r4
T13k1

1� e� T11 � eT11
� r5

T32k1 ÿ T31k2
1� e

� r6
T21k2 ÿ T22k1

1� e
,

�R8 � ÿr4 T12

1� e� T11 � eT11
ÿ r5

T33

1� e
� r6

T23

1� e

�R10 � r4: �C1�
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